1.點(diǎn)擊下面按鈕復(fù)制微信號(hào)
點(diǎn)擊復(fù)制微信號(hào)
上海威才企業(yè)管理咨詢有限公司
本課程為高級(jí)課程,培訓(xùn)的內(nèi)容是繼中級(jí)課程之后學(xué)習(xí)的,同時(shí)提供了更復(fù)雜的數(shù)據(jù)模型來解決實(shí)際工作中的商業(yè)決策問題。
本課程面向高級(jí)數(shù)據(jù)分析人員,以及系統(tǒng)開發(fā)人員。
本課程核心內(nèi)容為數(shù)據(jù)挖掘,分類預(yù)測(cè)模型,以及專題模型分析,幫助學(xué)員構(gòu)建系統(tǒng)全面的業(yè)務(wù)分析思維,提升學(xué)員的數(shù)據(jù)分析綜合能力。
本課程覆蓋了如下內(nèi)容:
數(shù)據(jù)建模過程
分類預(yù)測(cè)模型
分類模型優(yōu)化思路
市場(chǎng)專題分析模型
熟悉建模的一般過程,能夠獨(dú)立完成整個(gè)預(yù)測(cè)建模項(xiàng)目的實(shí)現(xiàn)。
熟練使用各種分類預(yù)測(cè)模型,以及其應(yīng)用場(chǎng)景。
熟悉模型質(zhì)量評(píng)估的關(guān)鍵指標(biāo),掌握模型優(yōu)化的整體思路。
熟練掌握常用市場(chǎng)專題分析模型:
學(xué)會(huì)做市場(chǎng)客戶細(xì)分,劃分客戶群
數(shù)據(jù)建模過程
預(yù)測(cè)建模六步法
選擇模型:基于業(yè)務(wù)選擇恰當(dāng)?shù)臄?shù)據(jù)模型
屬性篩選:選擇對(duì)目標(biāo)變量有顯著影響的屬性來建模
訓(xùn)練模型:采用合適的算法對(duì)模型進(jìn)行訓(xùn)練,尋找到最合適的模型參數(shù)
評(píng)估模型:進(jìn)行評(píng)估模型的質(zhì)量,判斷模型是否可用
優(yōu)化模型:如果評(píng)估結(jié)果不理想,則需要對(duì)模型進(jìn)行優(yōu)化
應(yīng)用模型:如果評(píng)估結(jié)果滿足要求,則可應(yīng)用模型于業(yè)務(wù)場(chǎng)景
數(shù)據(jù)挖掘常用的模型
數(shù)值預(yù)測(cè)模型:回歸預(yù)測(cè)、時(shí)序預(yù)測(cè)等
分類預(yù)測(cè)模型:邏輯回歸、決策樹、神經(jīng)網(wǎng)絡(luò)、支持向量機(jī)等
市場(chǎng)細(xì)分:聚類、RFM、PCA等
產(chǎn)品推薦:關(guān)聯(lián)分析、協(xié)同過濾等
產(chǎn)品優(yōu)化:回歸、隨機(jī)效用等
產(chǎn)品定價(jià):定價(jià)策略/最優(yōu)定價(jià)等
屬性篩選/特征選擇/變量降維
基于變量本身特征
基于相關(guān)性判斷
因子合并(PCA等)
IV值篩選(評(píng)分卡使用)
基于信息增益判斷(決策樹使用)
模型評(píng)估
模型質(zhì)量評(píng)估指標(biāo):R^2、正確率/查全率/查準(zhǔn)率/特異性等
預(yù)測(cè)值評(píng)估指標(biāo):MAD、MSE/RMSE、MAPE、概率等
模型評(píng)估方法:留出法、K拆交叉驗(yàn)證、自助法等
其它評(píng)估:過擬合評(píng)估
模型優(yōu)化
優(yōu)化模型:選擇新模型/修改模型
優(yōu)化數(shù)據(jù):新增顯著自變量
優(yōu)化公式:采用新的計(jì)算公式
模型實(shí)現(xiàn)算法(暫略)
好模型是優(yōu)化出來的
案例:通信客戶流失分析及預(yù)警模型
分類預(yù)測(cè)模型
問題:如何評(píng)估客戶購買產(chǎn)品的可能性?如何預(yù)測(cè)客戶的購買行為?如何提取某類客戶的典型特征?如何向客戶精準(zhǔn)推薦產(chǎn)品或業(yè)務(wù)?
分類模型概述
常見分類預(yù)測(cè)模型
邏輯回歸(LR)
邏輯回歸模型原理及適用場(chǎng)景
邏輯回歸的種類
二項(xiàng)邏輯回歸
多項(xiàng)邏輯回歸
如何解讀邏輯回歸方程
帶分類自變量的邏輯回歸分析
多元邏輯回歸
案例:如何評(píng)估用戶是否會(huì)購買某產(chǎn)品(二元邏輯回歸)
案例:多品牌選擇模型分析(多元邏輯回歸)
分類決策樹(DT)
問題:如何預(yù)測(cè)客戶行為?如何識(shí)別潛在客戶?
風(fēng)控:如何識(shí)別欠貸者的特征,以及預(yù)測(cè)欠貸概率?
客戶保有:如何識(shí)別流失客戶特征,以及預(yù)測(cè)客戶流失概率?
決策樹分類簡(jiǎn)介
案例:美國零售商(Target)如何預(yù)測(cè)少女懷孕
演練:識(shí)別銀行欠貨風(fēng)險(xiǎn),提取欠貸者的特征
構(gòu)建決策樹的三個(gè)關(guān)鍵問題
如何選擇最佳屬性來構(gòu)建節(jié)點(diǎn)
如何分裂變量
修剪決策樹
選擇最優(yōu)屬性
熵、基尼索引、分類錯(cuò)誤
屬性劃分增益
如何分裂變量
多元?jiǎng)澐峙c二元?jiǎng)澐?br/>連續(xù)變量離散化(最優(yōu)劃分點(diǎn))
修剪決策樹
剪枝原則
預(yù)剪枝與后剪枝
構(gòu)建決策樹的四個(gè)算法
C5.0、CHAID、CART、QUEST
各種算法的比較
如何選擇最優(yōu)分類模型?
案例:商場(chǎng)酸奶購買用戶特征提取
案例:客戶流失預(yù)警與客戶挽留
案例:識(shí)別拖欠銀行貨款者的特征,避免不良貨款
案例:識(shí)別電信詐騙者嘴臉,讓通信更安全
人工神經(jīng)網(wǎng)絡(luò)(ANN)
神經(jīng)網(wǎng)絡(luò)概述
神經(jīng)網(wǎng)絡(luò)基本原理
神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)
神經(jīng)網(wǎng)絡(luò)的建立步驟
神經(jīng)網(wǎng)絡(luò)的關(guān)鍵問題
BP反向傳播網(wǎng)絡(luò)(MLP)
徑向基網(wǎng)絡(luò)(RBF)
案例:評(píng)估銀行用戶拖欠貨款的概率
判別分析(DA)
判別分析原理
距離判別法
典型判別法
貝葉斯判別法
案例:MBA學(xué)生錄取判別分析
案例:上市公司類別評(píng)估
最近鄰分類(KNN)
基本原理
關(guān)鍵問題
貝葉斯分類(NBN)
貝葉斯分類原理
計(jì)算類別屬性的條件概率
估計(jì)連續(xù)屬性的條件概率
貝葉斯網(wǎng)絡(luò)種類:TAN/馬爾科夫毯
預(yù)測(cè)分類概率(計(jì)算概率)
案例:評(píng)估銀行用戶拖欠貨款的概率
支持向量機(jī)(SVM)
SVM基本原理
線性可分問題:最大邊界超平面
線性不可分問題:特征空間的轉(zhuǎn)換
維空難與核函數(shù)
分類模型優(yōu)化
集成方法的基本原理:利用弱分類器構(gòu)建強(qiáng)分類模型
選取多個(gè)數(shù)據(jù)集,構(gòu)建多個(gè)弱分類器
多個(gè)弱分類器投票決定
集成方法/元算法的種類
Bagging算法
Boosting算法
Bagging原理
如何選擇數(shù)據(jù)集
如何進(jìn)行投票
隨機(jī)森林
Boosting的原理
AdaBoost算法流程
樣本選擇權(quán)重計(jì)算公式
分類器投票權(quán)重計(jì)算公式
市場(chǎng)細(xì)分模型
問題:我們的客戶有幾類?各類特征是什么?如何實(shí)現(xiàn)客戶細(xì)分,開發(fā)符合細(xì)分市場(chǎng)的新產(chǎn)品?如何提取客戶特征,從而對(duì)產(chǎn)品進(jìn)行市場(chǎng)定位?
市場(chǎng)細(xì)分的常用方法
有指導(dǎo)細(xì)分
無指導(dǎo)細(xì)分
聚類分析
如何更好的了解客戶群體和市場(chǎng)細(xì)分?
如何識(shí)別客戶群體特征?
如何確定客戶要分成多少適當(dāng)?shù)念悇e?
聚類方法原理介紹
聚類方法作用及其適用場(chǎng)景
聚類分析的種類
K均值聚類(快速聚類)
案例:移動(dòng)三大品牌細(xì)分市場(chǎng)合適嗎?
演練:寶潔公司如何選擇新產(chǎn)品試銷區(qū)域?
演練:如何評(píng)選優(yōu)秀員工?
演練:中國各省份發(fā)達(dá)程度分析,讓數(shù)據(jù)自動(dòng)聚類
層次聚類(系統(tǒng)聚類):發(fā)現(xiàn)多個(gè)類別
R型聚類與Q型聚類的區(qū)別
案例:中移動(dòng)如何實(shí)現(xiàn)客戶細(xì)分及營銷策略
演練:中國省市經(jīng)濟(jì)發(fā)展情況分析(Q型聚類)
演練:裁判評(píng)分的標(biāo)準(zhǔn)衡量,避免“黑哨”(R型聚類)
兩步聚類
主成分分析
主成分分析方法介紹
主成分分析基本思想
主成分分析步驟
案例:如何評(píng)估汽車購買者的客戶細(xì)分市場(chǎng)
客戶價(jià)值分析
營銷問題:如何評(píng)估客戶的價(jià)值?不同的價(jià)值客戶有何區(qū)別對(duì)待?
如何評(píng)價(jià)客戶生命周期的價(jià)值
貼現(xiàn)率與留存率
評(píng)估客戶的真實(shí)價(jià)值
使用雙向表衡量屬性敏感度
變化的邊際利潤(rùn)
案例:評(píng)估營銷行為的合理性
RFM模型(客戶價(jià)值評(píng)估)
RFM模型,更深入了解你的客戶價(jià)值
RFM模型與市場(chǎng)策略
RFM模型與活躍度分析
案例:淘寶客戶價(jià)值評(píng)估與促銷名單
案例:重購用戶特征分析
產(chǎn)品推薦模型
問題:購買A產(chǎn)品的顧客還常常要購買其他什么產(chǎn)品?應(yīng)該給客戶推薦什么產(chǎn)品最有可能被接受?
從搜索引擎到推薦引擎
常用產(chǎn)品援藏模型及算法
基于流行度的推薦
基于排行榜的推薦,適用于剛注冊(cè)的用戶
優(yōu)化思路:分群推薦
基于內(nèi)容的推薦CBR
關(guān)鍵問題:如何計(jì)算物品的相似度
優(yōu)缺點(diǎn)
優(yōu)化:Rocchio算法、基于標(biāo)簽的推薦、基于興趣度的推薦
基于用戶的推薦
關(guān)鍵問題:如何對(duì)用戶分類/計(jì)算用戶的相似度
算法:按屬性分類、RFM模型、PCA、聚類、按偏好分類、按地理位置
協(xié)同過濾的推薦
基于用戶的協(xié)同過濾
基于物品的協(xié)同過濾
冷啟動(dòng)的問題
案例:計(jì)算用戶相似度、計(jì)算物品相似度
基于關(guān)聯(lián)分析的推薦
如何制定套餐,實(shí)現(xiàn)交叉/捆綁銷售
案例:啤酒與尿布、颶風(fēng)與蛋撻
關(guān)聯(lián)分析模型原理(Association)
關(guān)聯(lián)規(guī)則的兩個(gè)關(guān)鍵參數(shù)
支持度
置信度
關(guān)聯(lián)分析的適用場(chǎng)景
案例:購物籃分析與產(chǎn)品捆綁銷售/布局優(yōu)化
案例:通信產(chǎn)品的交叉銷售與產(chǎn)品推薦
基于分類模型的推薦
其它推薦算法
LFM基于隱語義模型
按社交關(guān)系
基于時(shí)間上下文
多推薦引擎的協(xié)同工作
產(chǎn)品設(shè)計(jì)優(yōu)化
聯(lián)合分析法
離散選擇模型
如何評(píng)估客戶購買產(chǎn)品的概率
如何指導(dǎo)產(chǎn)品開發(fā)?如何確定產(chǎn)品的重要特性
競(jìng)爭(zhēng)下的產(chǎn)品動(dòng)態(tài)調(diào)價(jià)
如何評(píng)估產(chǎn)品的價(jià)格彈性
案例:產(chǎn)品開發(fā)與設(shè)計(jì)分析
案例:品牌價(jià)值與價(jià)格敏感度分析
案例:納什均衡價(jià)格
品牌價(jià)值評(píng)估
新產(chǎn)品市場(chǎng)占有率評(píng)估
產(chǎn)品定價(jià)策略及產(chǎn)品最優(yōu)定價(jià)
營銷問題:產(chǎn)品如何實(shí)現(xiàn)最優(yōu)定價(jià)?套餐價(jià)格如何確定?采用哪些定價(jià)策略可達(dá)到利潤(rùn)最大化?
常見的定價(jià)方法
產(chǎn)品定價(jià)的理論依據(jù)
需求曲線與利潤(rùn)最大化
如何求解最優(yōu)定價(jià)
案例:產(chǎn)品最優(yōu)定價(jià)求解
如何評(píng)估需求曲線
價(jià)格彈性
曲線方程(線性、乘冪)
如何做產(chǎn)品組合定價(jià)
如何做產(chǎn)品捆綁/套餐定價(jià)
最大收益定價(jià)(演進(jìn)規(guī)劃求解)
避免價(jià)格反轉(zhuǎn)的套餐定價(jià)
案例:電信公司的寬帶、IPTV、移動(dòng)電話套餐定價(jià)
非線性定價(jià)原理
要理解支付意愿曲線
支付意愿曲線與需求曲線的異同
案例:雙重收費(fèi)如何定價(jià)(如會(huì)費(fèi)+按次計(jì)費(fèi))
階梯定價(jià)策略
案例:電力公司如何做階梯定價(jià)
數(shù)量折扣定價(jià)策略
案例:如何通過折扣來實(shí)現(xiàn)薄利多銷
定價(jià)策略的評(píng)估與選擇
案例:零售公司如何選擇最優(yōu)定價(jià)策略
航空公司的收益管理
收益管理介紹
如何確定機(jī)票預(yù)訂限制
如何確定機(jī)票超售數(shù)量
如何評(píng)估模型的收益
案例:FBN航空公司如何實(shí)現(xiàn)收益管理(預(yù)訂/超售)
信用評(píng)分卡模型
信用評(píng)分卡模型簡(jiǎn)介
評(píng)分卡的關(guān)鍵問題
信用評(píng)分卡建立過程
篩選重要屬性
數(shù)據(jù)集轉(zhuǎn)化
建立分類模型
計(jì)算屬性分值
確定審批閾值
篩選重要屬性
屬性分段
基本概念:WOE、IV
屬性重要性評(píng)估
數(shù)據(jù)集轉(zhuǎn)化
連續(xù)屬性最優(yōu)分段
計(jì)算屬性取值的WOE
建立分類模型
訓(xùn)練邏輯回歸模型
評(píng)估模型
得到字段系數(shù)
計(jì)算屬性分值
計(jì)算補(bǔ)償與刻度值
計(jì)算各字段得分
生成評(píng)分卡
確定審批閾值
畫K-S曲線
計(jì)算K-S值
獲取最優(yōu)閾值
實(shí)戰(zhàn)篇
電信業(yè)客戶流失預(yù)警和客戶挽留模型實(shí)戰(zhàn)
銀行欠貸風(fēng)險(xiǎn)預(yù)測(cè)模型實(shí)戰(zhàn)
銀行信用卡評(píng)分模型實(shí)戰(zhàn)
結(jié)束:課程總結(jié)與問題答疑。
聯(lián)系電話:4006-900-901
微信咨詢:威才客服
企業(yè)郵箱:shwczx@shwczx.com
深耕中國制造業(yè)
助力企業(yè)轉(zhuǎn)型
2021年度咨詢客戶數(shù)
資深實(shí)戰(zhàn)導(dǎo)師
客戶滿意度
續(xù)單和轉(zhuǎn)介紹